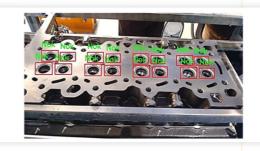
Optical Quality Control of 16 Cylinder Head

Function: #Production Process Optimisation | Industry: #Manufacturing

Goa

- To ensure manufacturing precision and reliability.
- To quickly identify cracks, porosities, or surface imperfections on the cylinder head using computer vision.
- To separate defective cylinder heads from those meeting quality standards based on computer vision results.

Technique


- Image augmentation
- · Image classification
- · Object detection
- Computer visionDeep learning
- Surface Defect Analysis

Impact

- Early defect identification and process optimization contribute to lower production costs.
- Predictive maintenance based on data science models minimizes downtime and prevents unexpected failures.
- Automation reduces manual effort, leading to quicker inspections and improved production efficiency.

Result

Value Points

Understand the what, why, when, where & how

Data Preprocessing

Data pre-processing using image augmentation and enhancement techniques

Image pre-processing using augmentation techniques and labelling

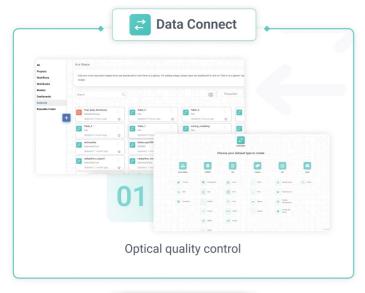
Image augmentation generates additional data for model to learn. Image labelling is preprocessing step for model building.

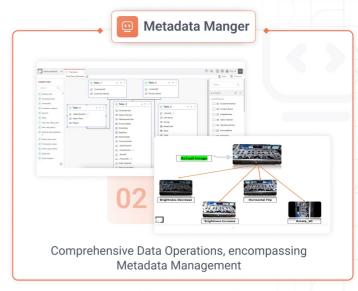
Model	Size (Pixels)	mAP @0.5:0.95	mAP @0.5	Time CPU b1 (ms)	Time V100 b1 (ms)	Time V100 b32 (ms)	Params (M)	FLOPS @640 (B)
YOLOv5n	640	28.0	45.7	45	6.6	0.6	1.9	4.5
YOLOv5s	640	37.4	56.8	98	6.4	0.9	7.2	16.5
YOLOv5m	640	45.4	64.1	224	8.2	1.7	21.2	49.0
YOLOv5l	640	49.0	67.3	430	10.1	2.7	46.5	109.1
YOLOv5x	640	50.7	68.9	766	12.1	4.8	86.7	205.7
Input			Backbone		Neck		Dense Prediction	
						•	Dense Pred	iction

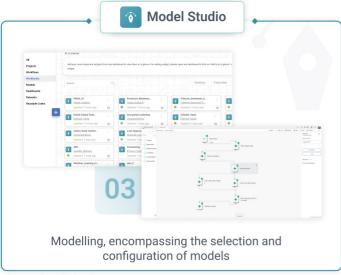
Perform object detection using YoLov5 to classify and detect bearing condition

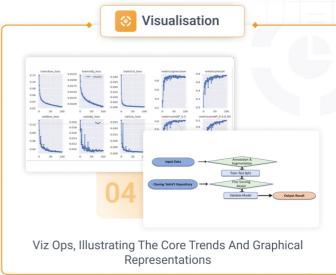
Object detection is a computer vision technique for locating instances of objects in images or videos.

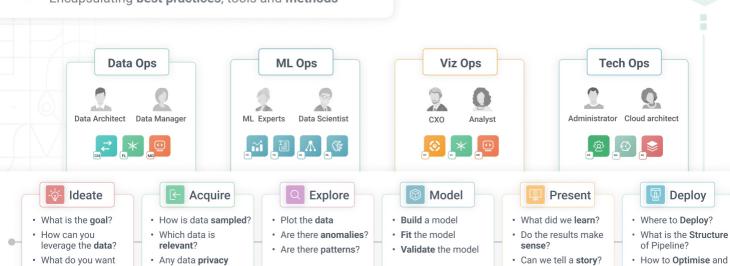
Comparative Analysis


Comparative Study using deep learning architectures


Conducting a comparative analysis of different deep learning architectures to discern the intricacies of each model for locating objects.


Multi Persona DSML Platform


For all your data needs- Data Engineering, Data Science, Data Visualisation, IoT



Agile Data Science

Encapsulating best practices, tools and methods

to predict?

issue?

Scale?